LLMs4OL 2025 Overview: The 2nd Large Language Models for Ontology Learning Challenge
DOI:
https://doi.org/10.52825/ocp.v6i.2913Keywords:
Ontology Learning, LLMs4OL Approach, Text2Onto, Generative AI, Large Language ModelsAbstract
We present the results of the 2nd LLMs4OL 2025 Challenge, a shared task designed to evaluate the effectiveness of large language models (LLMs) for ontology learning. The challenge attracted a diverse set of participants who leveraged a broad spectrum of models, including general-purpose LLMs, domain-specific models, and embedding-based systems. Submissions covered multiple subtasks such as Text2Onto, term typing, taxonomy discovery, and non-taxonomic relationship extractions. The results highlight that hybrid pipelines integrating commercial LLMs with domain-tuned embeddings and fine-tuning approaches achieved the strongest overall performance, while specialized domain models improved results in biomedical and technical datasets. Key insights include the importance of prompt engineering, retrieval-augmented generation (RAG), and ensemble learning. This paper presents the second benchmark of LLM-driven ontology learning, serving as an overview of the participants’ contributions to the challenge. Building on this, this overview presents findings, highlights emerging strategies, and offers practical insights for researchers and practitioners seeking to align unstructured language with structured knowledge.
Downloads
References
H. Babaei Giglou, J. D’Souza, and S. Auer, “Llms4ol: Large language models for ontology learning,” in International Semantic Web Conference, Springer, 2023, pp. 408–427.
H. Babaei Giglou, J. D’Souza, and S. Auer, “Llms4ol 2024 overview: The 1st large language models for ontology learning challenge,” Open Conference Proceedings, vol. 4, pp. 3–16, Oct. 2024. DOI : 10.52825/ocp.v4i.2473. [Online]. Available: https://www.tib-op.org/ojs/index.php/ocp/article/view/2473.
H. B. Giglou, J. D’Souza, S. Sadruddin, and S. Auer, “Llms4ol 2024 datasets: Toward ontology learning with large language models,” in Open Conference Proceedings, vol. 4, 2024, pp. 17–30.
A. Bandrowski, R. Brinkman, M. Brochhausen, et al., “The ontology for biomedical investigations,” PloS one, vol. 11, no. 4, e0154556, 2016.
R. G. B. Miller and B. Heussler, Matonto, https://github.com/inovexcorp/MatOnto-Ontologies, Ontology repository for material science, 2014. [Online]. Available: https://github.com/inovexcorp/MatOnto-Ontologies.
R. G. Raskin and M. J. Pan, “Knowledge representation in the semantic web for earth and environmental terminology (sweet),” Computers & geosciences, vol. 31, no. 9, pp. 1119–1125, 2005.
L. M. Schriml, E. Mitraka, J. Munro, et al., “Human disease ontology 2018 update: Classification, content and workflow expansion,” Nucleic acids research, vol. 47, no. D1, pp. D955–D962, 2019.
P. Barker and L. M. Campbell, “What is schema. org,” LRMI. Retrieved April, vol. 21, p. 2015, 2014.
Schema.org Community, Schema.org - structured data on the web, https://schema.org, Accessed: 2025, 2011. [Online]. Available: https://schema.org.
W. Schafer, O. He, A. L. Dunn, and Z. E. X. Dance, Ontology for process chemistry giving context to instrument data structured by the allotrope data model, Presented at the Allotrope Connect Virtual Conference, April 19–26, 2021, Virtual meeting, 2021. [Online]. Available: https://www.youtube.com/watch?v=HVv8TJc7p9c.
D. M. Dooley, E. J. Griffiths, G. S. Gosal, et al., “Foodon: A harmonized food ontology to increase global food traceability, quality control and data integration,” npj Science of Food, vol. 2, no. 1, p. 23, 2018.
P. Jaiswal, S. Avraham, K. Ilic, et al., “Plant ontology (po): A controlled vocabulary of plant structures and growth stages,” Comparative and functional genomics, vol. 6, no. 7-8, pp. 388–397, 2005.
G. O. Consortium, “The gene ontology (go) database and informatics resource,” Nucleicacids research, vol. 32, no. suppl 1, pp. D258–D261, 2004.
A. Pavao, I. Guyon, A.-C. Letournel, et al., “Codalab competitions: An open source platform to organize scientific challenges,” Journal of Machine Learning Research, vol. 24, no. 198, pp. 1–6, 2023. [Online]. Available: http://jmlr.org/papers/v24/21- 1436.html.
A. Barua, S. S. Norouzi, and P. Hitzler, “Daselab at llms4ol 2024 task a: Towards term typing in ontology learning,” in Open Conference Proceedings, vol. 4, 2024, pp. 77–84.
R. Rahnamoun and M. Shamsfard, “Sbu-nlp at llms4ol 2025 tasks a, b, and c: Stage-wise ontology construction through llms without any training procedure,” Open Conference Proceedings, 2025.
Anthropic. “Introducing claude 4.” Accessed: 2025-08-08. (May 2025), [Online]. Available: https://www.anthropic.com/news/claude-4.
N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese bert-networks,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Nov. 2019. [Online]. Available: https://arxiv.org/abs/1908.10084.
J. Chen, S. Xiao, P. Zhang, K. Luo, D. Lian, and Z. Liu, Bge m3-embedding: Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge distillation, 2024. arXiv: 2402.03216 [cs.CL].
D. Zhang, J. Li, Z. Zeng, and F. Wang, Jasper and stella: Distillation of sota embedding models, 2025. arXiv: 2412.19048 [cs.IR]. [Online]. Available: https://arxiv.org/abs/2412.19048.
G. Comanici, E. Bieber, M. Schaekermann, et al., “Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities,” arXiv preprint arXiv:2507.06261, 2025.
xAI, Grok, n.d. [Online]. Available: https://grok.com/.
DeepSeek-AI, Deepseek-v3 technical report, 2024. arXiv: 2412.19437 [cs.CL]. [Online]. Available: https://arxiv.org/abs/2412.19437.
OpenAI. “Gpt-4o mini: Advancing cost-efficient intelligence.” Accessed: 2025-08-08. (Jul. 2024), [Online]. Available: https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/.
A. Beliaeva and T. Rahmatullaev, “Alexbek at llms4ol 2025 tasks a, b, and c: Heterogeneous llm methods for ontology learning (few-shot prompting, ensemble typing, and attention-based taxonomies),” Open Conference Proceedings, 2025.
P. Lewis, E. Perez, A. Piktus, et al., Retrieval-augmented generation for knowledge intensive nlp tasks, 2021. arXiv: 2005 . 11401 [cs.CL]. [Online]. Available: https : / /arxiv.org/abs/2005.11401.
Z. Han, C. Gao, J. Liu, J. Zhang, and S. Q. Zhang, “Parameter-efficient fine-tuning for large models: A comprehensive survey,” arXiv preprint arXiv:2403.14608, 2024.
Y. Zhang, M. Li, D. Long, et al., “Qwen3 embedding: Advancing text embedding and reranking through foundation models,” arXiv preprint arXiv:2506.05176, 2025.
S. Xiao, Z. Liu, P. Zhang, and N. Muennighoff, C-pack: Packaged resources to advance general chinese embedding, 2023. arXiv: 2309.07597 [cs.CL].
Q. Team, Qwen3 technical report, 2025. arXiv: 2505.09388 [cs.CL]. [Online]. Available: https://arxiv.org/abs/2505.09388.
P. Goyal, S. Singh, and U. S. Tiwary, “Silp nlp at llms4ol 2025 tasks a, b, c, and d: Clustering-based ontology learning using llms,” Open Conference Proceedings, 2025.
P. Shetty, A. C. Rajan, C. Kuenneth, et al., “A general-purpose material property data extraction pipeline from large polymer corpora using natural language processing,” npj Computational Materials, vol. 9, no. 1, p. 52, 2023.
J. Lee, W. Yoon, S. Kim, et al., “Biobert: A pre-trained biomedical language representation model for biomedical text mining,” Bioinformatics, vol. 36, no. 4, pp. 1234–1240, 2020.
X. Zhao, K. Drake, C. Watanabe, Y. Sasaki, and H. Hando, “Labkag at llms4ol 2025 tasks a and c: Context-rich prompting for ontology construction,” Open Conference Proceedings, 2025.
I.-A. Latipov, M. Holenderski, and N. Meratnia, “Iris at llms4ol 2025 tasks b, c, and d: Enhancing ontology learning through data enrichment and type filtering,” Open Conference Proceedings, 2025.
P. He, J. Gao, and W. Chen, Debertav3: Improving deberta using electra-style pre-training with gradient-disentangled embedding sharing, 2021. arXiv: 2111.09543 [cs.CL].
R. Roche, K. Gray, J. Murdock, and D. C. Crowder, “Ellmo at llms4ol 2025 tasks a and d: Llm-based term, type, and relationship extraction,” Open Conference Proceedings, 2025.
P. Wiangnak, T. Prabhong, T. Phuttaamart, N. Kertkeidkachorn, and K. Shirai, “The dream-llms at llms4ol 2025 task b: A deliberation-based reasoning ensemble approach with multiple large language models for term typing in low-resource domains,” Open Conference Proceedings, 2025.
A. E. Fridouni and M. Sanaei, “Phoenixes at llms4ol 2025 task a: Ontology learning with large language models reasoning,” Open Conference Proceedings, 2025.
Q. Team, Qwen2.5: A party of foundation models, Sep. 2024. [Online]. Available: https://qwenlm.github.io/blog/qwen2.5/.
A. Dubey, A. Jauhri, A. Pandey, et al., “The llama 3 herd of models,” arXiv e-prints, arXiv–2407, 2024.
A. Q. Jiang, A. Sablayrolles, A. Mensch, et al., Mistral 7b, 2023. arXiv: 2310 . 06825 [cs.CL]. [Online]. Available: https://arxiv.org/abs/2310.06825.
C. Yimmark and T. Racharak, “T-grec at llms4ol 2025 task b: A report on term-typing task of obi dataset using llm with k-nearest neighbors,” Open Conference Proceedings, 2025.
Y. Liu, M. Ott, N. Goyal, et al., “Roberta: A robustly optimized bert pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.
Y. Gu, R. Tinn, H. Cheng, et al., “Domain-specific language model pretraining for biomedical natural language processing,” ACM Transactions on Computing for Healthcare (HEALTH), vol. 3, no. 1, pp. 1–23, 2021.
R. Ilman, M. Rahman, and S. Rahman, “Cuet zenith at llms4ol 2025 task c: Hybrid embedding-llm architectures for taxonomy discovery,” Open Conference Proceedings, 2025.
M. Canal, J. I. Abreu, and Y. Gutiérrez, “Sema at llms4ol 2025 task c: Prompt-decoupled fine-tuning on matonto with llama,” Open Conference Proceedings, 2025.
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Hamed Babaei Giglou, Jennifer D'Souza, Nandana Mihindukulasooriya, Sören Auer

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Bundesministerium für Bildung und Forschung
Grant numbers 01lS22070 -
Deutsche Forschungsgemeinschaft
Grant numbers 460234259