Structural Performance of Textile Reinforced 3D-Printed Concrete Elements




The aim of this study is to verify the industrial feasibility of integrating textile reinforcement into the 3D concrete printing process and to determine the flexural strength of 3D-printed concrete reinforced with alkali-resistant glass textiles. Due to the non-corrosiveness of the textile reinforcement, thin-walled concrete elements are feasible, reducing material consumption by up to 80 percent compared to steel reinforced concrete. The proposed method of the authors aims to combine 3D concrete printing with a single-sided, movable formwork in order to reduce the time-, personnel-, cost- and material-intensive formwork effort. As a first step towards that goal, in this study, a single-sided stable formwork following the printing path is designed and tested for its applicability on an industrial scale.

The prototypical implementation of the printing method through a textile reinforcement is tested. For this purpose, test panels reinforced with textiles vertically and horizontally are printed with concrete. The flexural tensile strength of the printed, reinforced elements is investigated in a four-point bending test. Based on the results of the investigations, the requirements for a movable formwork are defined for the industrial application of this study. The movable formwork will replace the formwork frames in the future, so that the 3D concrete printing process can be optimized in a material-saving way and in terms of circular economy.


Download data is not yet available.


J. Sanjayan, A. Nazari, B. Nematollahi, “3D Concrete Printing Technology – Construction and Building Applications”, Oxford, Cambridge: Butterworth-Heinemann – An imprint of Elsevier, 2019, S. XIX-XXI

WWF Deutschland, „Klimaschutz in der Beton- und Zementindustrie, Hintergrund und Handlungsoptionen“, Berlin: WWF Deutschland, 2019, S. 5

D. Friese, M. Scheurer, L. Hahn, T. Gries, C. Cherif, “Textile reinforcement structures for concrete construction applications––a review”, Journal of Composite Materials. 2022;56(26):4041-4064. doi:

Statistisches Bundesamt (destatis), „Baumaterialien im Jahr 2021 stark verteuert“ (24.04.2022)

I. Perkins, M. Skitmore, “Three-dimensional printing in the construction industry: a review” International Journal of Construction Management 15 (1) (2015), S. 1-9

BauInfoConsult GmbH, „Jahresanalyse 2018/19“ (14.12.2021)

V. Mechtcherine, V. Nerella, „Integration der Bewehrung beim 3D-Druck“, Beton Beton- und Stahlbetonbau 113 (2018), H. 7, S. 496-503

G. Dittel, S. Dringenberg, T. Gries, „Through Textile to Reinforced 3D Concrete Printing”, In: Ilki, A., Çavunt, D., Çavunt, Y.S. (eds) Building for the Future: Durable, Sus-tainable, Resilient. fib Symposium 2023. Lecture Notes in Civil Engineering, vol 349. Springer, Cham.

G. Dittel, M. Scheurer, S. Dringenberg, J. V. Jitton, T. Gries, “Digital Concrete Production with Vertical Textile Reinforcement: First Trials”, Open Conference Proceed-ings, 1, 35–43.

M. Claßen, J. Claßen, R. Sharma, „Konzeptionierung eines praxisorientierten 3D-Druckverfahrens für den Verbundwerkstoff Stahlbeton (AmoRC)“ Beton- und Stahl-betonbau 115 (2020), H. 12, S. 934-942

A. Younes, A. Seidel, S. Rittner, C. Cherif, R. Thyroff, „Innovative textile Bewehrungen für hochbelastbare Betonbauteile“ Beton- und Stahlbetonbau 110 (2015), S1, S. 16-21

DIN EN ISO 139:2011-10, Textilien – Normalklimate für die Probenvorbereitung und Prüfung

DIN EN 1170-5:1997, Vorgefertigte Betonerzeugnisse – Prüfverfahren für Glasfaserbeton Teil 5: Bestimmung der Biegezugfestigkeit, Vollständige Biegezugprüfung



How to Cite

Dittel, G., Scheurer, M., Evers, C., Meyer-Brötz, F., Patel, A., Osswald, M., & Gries, T. (2023). Structural Performance of Textile Reinforced 3D-Printed Concrete Elements. Open Conference Proceedings, 3.

Conference Proceedings Volume


Contributions to the symposium "Visions and Strategies for Reinforcing Additively Manufactured Constructions 2023"
Received 2023-05-12
Accepted 2023-11-22
Published 2023-12-15