A Corrosion Suppression Coatings for Molten Nitrate Salt
DOI:
https://doi.org/10.52825/solarpaces.v2i.924Schlagworte:
Thermal Energy Storage, Molten Nitrate Salts, Corrosion Resistant CoatingsAbstract
The use of solar energy for power generation provides an efficient sustainable energy solution. Among a number of technologies developed for power generation using solar energy, concentrating solar power (CSP) is encouraging because it makes use of mature technology in the power block. Thermal energy storage (TES) is added to CSP, making it competitive with other power generation technologies and delivering dispatchable energy. Molten salts are one of the materials of choice for the TES. Although the use of molten salts as heat transfer fluid and thermal storage in CSP has various advantages, storage tanks and pipework can be highly susceptible to corrosion. Different approaches have been adopted to suppress corrosion including the use of specialised alloys and high purity molten salts; however, both contribute to a substantial increase in construction and operating costs.
In this study, a literature review is provided on coatings to suppress the hot corrosion of the storage vessels and pipework containing molten salts. There has been widespread use of anticorrosion coatings for numerous applications, providing guidelines to develop anticorrosion coatings for TES. Various important factors to be considered for choosing coating material are described herein. To date, several published studies discuss the corrosion resistance of different alloys and coatings for different applications. This study reports on corrosion tests and oxidation tests, while making comparison between different alloys with use of data extracted from literature. Among other materials studied the nickel aluminium alloys exhibit very promising properties as protective coating.
Downloads
Literaturhinweise
B. Brand, A. Boudghene Stambouli, D. Zejli, The value of dispatchability of CSP plants in the electricity systems of Morocco and Algeria, Energy Policy 47 (2012) 321–331. https://doi.org/10.1016/j.enpol.2012.04.073.
H. Price, D. Kearney, F. Redell, R. Charles, F. Morse, Dispatchable solar power plant, AIP Conf Proc 2033 (2018). https://doi.org/10.1063/1.5067068.
A.M. Yasin, The Impact of Dispatchability of Parabolic Trough CSP Plants over PV Power Plants in Palestinian Territories, International Journal of Photoenergy 2019 (2019). https://doi.org/10.1155/2019/4097852.
M. Bošnjaković, V. Tadijanović, Environment impact of a concentrated solar power plant, Tehnički Glasnik 13 (2019) 68–74. https://doi.org/10.31803/tg-20180911085644.
R. Li, H. Zhang, H. Wang, Q. Tu, X. Wang, Integrated hybrid life cycle assessment and contribution analysis for CO2 emission and energy consumption of a concentrated so-lar power plant in China, Energy 174 (2019) 310–322. https://doi.org/10.1016/j.energy.2019.02.066.
O. Achkari, A. El Fadar, Latest developments on TES and CSP technologies – Energy and environmental issues, applications and research trends, Appl Therm Eng 167 (2020) 114806. https://doi.org/10.1016/j.applthermaleng.2019.114806.
F.J. Pérez, V. Encinas-Sánchez, G. García-Martín, M.I. Lasanta, M.T. De Miguel, Dy-namic pilot plant facility for applications in CSP: Evaluation of corrosion resistance of A516 in a nitrate molten salt mixture, AIP Conf Proc 1850 (2017) 226–231. https://doi.org/10.1063/1.4984503.
S. Han, C. Zhang, Y. Wu, Y. Lu, J. Niu, Study on Flow and Heat Transfer Performance of Molten Salt Based Nanofluids in Shell and Twisted Tube Heat Exchanger with Shut-ter Baffle, Int J Thermophys 44 (2023). https://doi.org/10.1007/s10765-022-03134-6.
D. Barlev, R. Vidu, P. Stroeve, Innovation in concentrated solar power, Solar Energy Materials and Solar Cells 95 (2011) 2703–2725. https://doi.org/10.1016/j.solmat.2011.05.020.
J. Gasia, L. Miró, L.F. Cabeza, Review on system and materials requirements for high temperature thermal energy storage. Part 1: General requirements, Renewable and Sustainable Energy Reviews 75 (2017) 1320–1338. https://doi.org/10.1016/j.rser.2016.11.119.
H. Singh, B.S. Sidhu, D. Puri, S. Prakash, Use of plasma spray technology for deposi-tion of high temperature oxidation/corrosion resistant coatings - A review, Materials and Corrosion 58 (2007) 92–102. https://doi.org/10.1002/maco.200603985.
S. Bose, High temperature coatings, Butterworth-Heinemann, 2017.
P.F. Tortorelli, P.S. Bishop, J.R. DiStefano, Selection of Corrosion-Resistant Materials for Use in Molten Nitrate Salts, Oak Ridge National Laboratory, Tennessee, 1989.
I.A. Podchernyaeva, A.D. Panasyuk, Protective Coatings on Heat-Resistant Nickel Alloys (Review), Powder Metallurgy and Metal Ceramics (2000) 434–444.
A. Kruizenga, D. Gill, Corrosion of iron stainless steels in molten nitrate salt, Energy Procedia 49 (2013) 878–887. https://doi.org/10.1016/j.egypro.2014.03.095.
J.T. Chang, a. Davison, J.L. He, a. Matthews, Deposition of Ni–Al–Y alloy films using a hybrid arc ion plating and magnetron sputtering system, Surf Coat Technol 200 (2006) 5877–5883. https://doi.org/10.1016/j.surfcoat.2005.08.138.
A.M. Kruizenga, D.D. Gill, M. Laford, Materials Corrosion of High Temperature Alloys Immersed in 600 ° C Binary Nitrate Salt, Sandia Report SAND 2013- (2013) 1–57. https://doi.org/10.2172/1088090.
J.W. Slusser, J.B. Titcomb, M.T. Heffelfinger, B.R. Dunbobbin, Corrosion in Molten Nitrate-Nitrite Salts, Journal of Metals 37 (1985) 24–27. https://doi.org/10.1007/BF03259692.
P. Audigié, V. Encinas-Sánchez, M. Juez-Lorenzo, S. Rodríguez, M. Gutiérrez, F.J. Pérez, A. Agüero, High temperature molten salt corrosion behavior of aluminide and nickel-aluminide coatings for heat storage in concentrated solar power plants, Surf Coat Technol 349 (2018) 1148–1157. https://doi.org/10.1016/j.surfcoat.2018.05.081.
C. Sequeira, High Temperature Corrosion in Molten Salts, Trans Tech Publications, 2003.
A. Gomes, M. Navas, N. Uranga, T. Paiva, I. Figueira, T.C. Diamantino, High-temperature corrosion performance of austenitic stainless steels type AISI 316L and AISI 321H, in molten Solar Salt, Solar Energy 177 (2019) 408–419. https://doi.org/10.1016/j.solener.2018.11.019.
Q. Gao, Y. Lu, Q. Yu, Y. Wu, C. Zhang, R. Zhi, High-temperature corrosion behavior of austenitic stainless steel in quaternary nitrate molten salt nanofluids for concentrated solar power, Solar Energy Materials and Solar Cells 245 (2022). https://doi.org/10.1016/j.solmat.2022.111851.
S.H. Goods, R.W. Bradshaw, Corrosion of Stainless Steels and Carbon Steel by Mol-ten Mixtures of Commercial Nitrate Salts, J Mater Eng Perform 13 (2004) 78–87. https://doi.org/10.1361/10599490417542.
R.W. Bradshaw, W.M. Clift, SANDIA REPORT EFFECT OF CHLORIDE CONTENT OF MOLTEN NITRATE SALT ON CORROSION OF A516 CARBON STEEL, 2010. http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online.
C.M. Kramer, W.H. Smyrl, W.B. Estill, Corrosion of Fe alloys in NaNO 3 -KNO 3 -NaNO 2 at 823 K, Journal of Materials for Energy Systems 1 (1980) 59–65. https://doi.org/10.1007/BF02833362.
A. Soleimani Dorcheh, R.N. Durham, M.C. Galetz, Corrosion behavior of stainless and low-chromium steels and IN625 in molten nitrate salts at 600oC, Solar Energy Materi-als and Solar Cells 144 (2016) 109–116. https://doi.org/10.1016/j.solmat.2015.08.011.
a. G. Fernández, M.I. Lasanta, F.J. Pérez, Molten salt corrosion of stainless steels and low-Cr steel in CSP plants, Oxidation of Metals 78 (2012) 329–348. https://doi.org/10.1007/s11085-012-9310-x.
A. Soleimani Dorcheh, M.C. Galetz, Slurry aluminizing: A solution for molten nitrate salt corrosion in concentrated solar power plants, Solar Energy Materials and Solar Cells 146 (2016) 8–15. https://doi.org/10.1016/j.solmat.2015.11.024.
P. Audigié, N. Bizien, I. Baráibar, S. Rodríguez, A. Pastor, M. Hernández, A. Agüero, Aluminide slurry coatings for protection of ferritic steel in molten nitrate corrosion for concentrated solar power technology, 070002 (2016). https://doi.org/10.1063/1.4984416.
A. Agüero, F.J. García de Blas, M.C. García, R. Muelas, A. Román, Thermal spray coatings for molten carbonate fuel cells separator plates, Surf Coat Technol 146–147 (2001) 578–585. https://doi.org/10.1016/S0257-8972(01)01435-9.
C.S.S. Ni, L.Y.Y. Lu, C.L.L. Zeng, Y. Niu, Evaluation of corrosion resistance of alumin-ium coating with and without annealing against molten carbonate using electrochemical impedance spectroscopy, J Power Sources 261 (2014) 162–169. https://doi.org/http://dx.doi.org/10.1016/j.jpowsour.2014.03.076.
J.G. Gonzalez-Rodriguez, M. Cuellar-Hernández, M. Gonzalez-Castañeda, V.M. Sa-linas-Bravo, J. Porcayo-Calderon, G. Rosas, Effect of heat treatment and chemical composition on the corrosion behavior of FeAl intermetallics in molten (Li + K)carbonate, J Power Sources 172 (2007) 799–804. https://doi.org/10.1016/j.jpowsour.2007.05.010.
B. Fotovvati, N. Namdari, A. Dehghanghadikolaei, On coating techniques for surface protection: A review, Journal of Manufacturing and Materials Processing 3 (2019). https://doi.org/10.3390/jmmp3010028.
S.B. Mishra, K. Chandra, S. Prakash, B. Venkataraman, Characterisation and erosion behaviour of a plasma sprayed Ni3Al coating on a Fe-based superalloy, Mater Lett 59 (2005) 3694–3698. https://doi.org/10.1016/j.matlet.2005.06.050.
M. Spiegel, J. Mentz, High temperature corrosion beneath nitrate melts, Materials and Corrosion 65 (2014) 276–281. https://doi.org/10.1002/maco.201307076.
T.S. Sidhu, S. Prakash, R.D. Agrawal, Hot Corrosion Resistance of High-Velocity Oxy-fuel Sprayed Coatings on a Nickel-Base Superalloy in Molten Salt Environment, Jour-nal of Thermal Spray Technology 15 (2006) 387–399. https://doi.org/10.1361/105996306X124392.
H. Singh, D. Puri, S. Prakash, Some studies on hot corrosion performance of plasma sprayed coatings on a Fe-based superalloy, Surf Coat Technol 192 (2005) 27–38. https://doi.org/10.1016/j.surfcoat.2004.03.030.
M.C. Trent, S.H. Goods, R.W. Bradshaw, Comparison of corrosion performance of grade 316 and grade 347H stainless steels in molten nitrate salt, AIP Conf Proc 1734 (2016). https://doi.org/10.1063/1.4949258.
S. Kumar, V. Selvarajan, P.V. a Padmanabhan, K.P. Sreekumar, Characterization and comparison between ball milled and plasma processed nickel-aluminium powders, Surf Coat Technol 486 (2008) 287–294. https://doi.org/10.1016/j.surfcoat.2006.01.051.
S.C. Mishra, a. Satapathy, M. Chaithanya, P.V. Ananthapadmanabhan, K.P. Sreeku-mar, Wear Characteristics of Plasma Sprayed Nickel--Aluminum Composite Coatings, Journal of Reinforced Plastics and Composites 28 (2009) 2931–2940. https://doi.org/10.1177/0731684408094067.
N. Cinca, J.M. Guilemany, Thermal spraying of transition metal aluminides: An over-view, Intermetallics (Barking) 24 (2012) 60–72. https://doi.org/10.1016/j.intermet.2012.01.020.
R. a. Mahesh, R. Jayaganthan, S. Prakash, A study on hot corrosion behaviour of Ni-5Al coatings on Ni- and Fe-based superalloys in an aggressive environment at 900 ??C, J Alloys Compd 460 (2008) 220–231. https://doi.org/10.1016/j.jallcom.2007.05.092.
R. Starosta, Properties of Thermal Spraying Ni-Al Alloy Coatings, Advances in Materi-als Sciences 9 (2009). https://doi.org/10.2478/v10077-009-0004-2.
Q. Jia, D. Li, S. Li, Z. Zhang, N. Zhang, High-temperature oxidation resistance of NiAl intermetallic formed in Situ by thermal spraying, Coatings 8 (2018). https://doi.org/10.3390/coatings8080292.
B.S. Sidhu, S. Prakash, Degradation Behavior of Ni3Al Plasma-Sprayed Boiler Tube Steels in an Energy Generation System, J Mater Eng Perform 14 (2005) 356–362. https://doi.org/10.1361/10599490523382.
S. Saladi, J. V Menghani, S. Prakash, Characterization and Evaluation of Cyclic Hot Corrosion Resistance of Detonation-Gun Sprayed Ni-5Al Coatings on Inconel-718, Journal of Thermal Spray Technology 24 (2015) 778–788. https://doi.org/10.1007/s11666-015-0235-1.
B.S. Sidhu, S. Prakash, Evaluation of the corrosion behaviour of plasma-sprayed Ni 3 Al coatings on steel in oxidation and molten salt environments at 900 8C, Surf Coat Technol 166 (2003) 89–100. https://doi.org/10.1016/S0257-8972(02)00772-7.
S. Yasir, J.L. Endrino, E. Guillén, A.I. Aria, Suppression of molten salt corrosion by plasma sprayed Ni3Al coatings, Emergent Mater 4 (2021) 1583–1593. https://doi.org/10.1007/s42247-021-00334-y.
B.S. Sidhu, D. Puri, S. Prakash, Characterisations of plasma sprayed and laser re-melted NiCrAlY bond coats and Ni3Al coatings on boiler tube steels, Materials Science and Engineering A 368 (2004) 149–158. https://doi.org/10.1016/j.msea.2003.10.281.
S. Yasir, Development of NI3Al corrosion resistant coatings for SS347 heat storage components in presence of molten nitrate salt, Cranfield University, 2020.
Downloads
Veröffentlicht
Zitationsvorschlag
Konferenzband
Rubrik
Lizenz
Copyright (c) 2025 Sarah Yasir, Indrat Aria, Chris Sansom

Dieses Werk steht unter der Lizenz Creative Commons Namensnennung 4.0 International.
Accepted 2025-03-04
Published 2025-05-26