as a Lightweight Harmonization Approach for NFDI




Metadata Harmonization, Lightweight Semantics, Metadata, Metadata Schema, Bioschemas,

Abstract is a controlled vocabulary that makes it easier for web pages to describe their actual content in a semantic, structured and machine-processable way. It is recognized by major search engines and data aggregators, making it easier for researchers to expose metadata describing their research outcomes. Here we present how is used (or planned to be) by some NFDI consortia, becoming a lightweight approach to harmonize digital objects coming from different sources so they can be connected to each other in a meaningful way


Download data is not yet available.


Guha RV, Brickley D, Macbeth S (2016) Communications of the ACM 59 (2): 44‑51.

Gray A, Castro LJ, Juty N, Goble C. (2023) for Scientific Data. Artificial Intelligence for Science. World Scientific; pp. 495–514.

Benjelloun O, Chen S, Noy N. Google Dataset Search by the Numbers. 2020.

Gray AJG, Goble C, Jimenez RC (2017) From Potato Salad to Protein Annotation. ISWC Posters and Demo session. URL:

Shepherd A et al. (2022). v1.3.0. Zenodo.

Wu M, Juty N, RDA Research Metadata Schemas WG, Collins J, Duerr R, Ridsdale C, et al. (2022). Guidelines for publishing structured metadata on the Web. RDA.

Caracciolo, C., Stellato, A., Morshed, A., Johannsen, G., Rajbhandari, S., Jaques, Y., & Keizer, J. (2013). The AGROVOC Linked Dataset. Semantic Web, 4(3), 341–348.

Pommier C, Gruden K, Junker A et al. (2021). ELIXIR Plant sciences 2020-2023 Roadmap. F1000Research 2021, 10(ELIXIR):145

Tietz T, Bruns S, Sack H, Posthumus E. (version 1.1) NFDI4Culture Ontology. Available at

García, L. J., Giraldo, O. L., Castro, A. G., & Dumontier, M. (2017). Bioschemas: schema. org for the Life Sciences. In SWAT4LS.

Michel, F. (2018). Bioschemas & Schema. org: a lightweight semantic layer for life sciences websites. Biodiversity Information Science and Standards, 2, e25836.

Castro LJ, Palagi PM, Beard N, Attwood TK, Brazas MD. (2022) Bioschemas Training Profiles: A set of specifications for standardizing training information to facilitate the discovery of training programs and resources. bioRxiv.




How to Cite

Castro, L. J., Fluck, J., Arend, D., Lange, M., Martini, D., Neumann, S., … Rebholz-Schuhmann, D. (2023). as a Lightweight Harmonization Approach for NFDI. Proceedings of the Conference on Research Data Infrastructure , 1.
Received 2023-04-25
Accepted 2023-06-29
Published 2023-09-07

Funding data