Digital Twin-Based Concept for Reliable Research Data Management

Integrating Proprietary Data Sources for Hyperspectral Imaging




Research Data Management, Research 4.0, FAIR, Digital Twin, Container Digital Twin, Cyber-Physical System, Knowledge Graph, Ontology


In data-intensive research, reliable management of research data is a major challenge. In the field of Mass Spectrometry Imaging, vast amounts of data are being acquired from mostly proprietary data sources. Consequently, hindering seamless data integration into Research Data Management systems. Without a data repository, the continuous generation of scientific knowledge and innovative research based on existing information is limited. Moreover, to maintain the value of data to researchers throughout and beyond its lifecycle, FAIR principles for reliable data management approaches must be applied. To enable the required data transmission, the Digital Twin paradigm can be considered a reliable solution. The conceptual implementation of a heterogeneous mass spectrometer generating hyperspectral images leverages the Digital Twin to overcome common data management problems in data-intensive research.


J. Gray, D. T. Liu, M. Nieto-Santisteban, A. Szalay, D. J. DeWitt, and G. Heber, “Scientific data management in the coming decade,” ACM SIGMOD Record, vol. 34, no. 4, pp. 34– 41, Dec. 2005, ISSN: 0163-5808. DOI: 10.1145/1107499.1107503. [Online]. Available: (visited on 11/15/2022).

E. R. Amstalden van Hove, D. F. Smith, and R. M. Heeren, “A concise review of mass spectrometry imaging,” en, Journal of Chromatography A, vol. 1217, no. 25, Jun. 2010, ISSN: 00219673. DOI: 10.1016/j.chroma.2010.01.033. [Online]. Available: https:// (visited on 12/13/2022).

F. Gre ́lard, D. Legland, M. Fanuel, B. Arnaud, L. Foucat, and H. Rogniaux, “Esmraldi: Efficient methods for the fusion of mass spectrometry and magnetic resonance images,” BMC Bioinformatics, vol. 22, no. 1, p. 56, Feb. 2021, ISSN: 1471-2105. DOI: 10.1186/ s12859-020-03954-z. [Online]. Available: 03954-z (visited on 01/05/2023).

A.-M. Lahesmaa-Korpinen, S. M. Carlson, F. M. White, and S. Hautaniemi, “Integrated data management and validation platform for phosphorylated tandem mass spectrome- try data,” PROTEOMICS, vol. 10, no. 19, 2010, ISSN: 1615-9861. DOI: 10.1002/pmic. 200900727. [Online]. Available: pmic.200900727 (visited on 12/14/2022).

P. Romano, A. Profumo, M. Rocco, R. Mangerini, F. Ferri, and A. Facchiano, “Geena 2, improved automated analysis of MALDI/TOF mass spectra,” BMC Bioinformatics, vol. 17, no. 4, p. 61, Mar. 2016, ISSN: 1471-2105. DOI: 10.1186/s12859-016-0911-2. [Online]. Available: (visited on 12/14/2022).

O. J. R. Gustafsson, L. J. Winderbaum, M. R. Condina, B. A. Boughton, B. R. Hamil- ton, E. A. B. Undheim, M. Becker, and P. Hoffmann, “Balancing sufficiency and impact in reporting standards for mass spectrometry imaging experiments,” GigaScience, vol. 7, no. 10, Oct. 2018, ISSN: 2047-217X. DOI: 10.1093/gigascience/giy102. [Online]. Available: (visited on 10/26/2022).

A. Whyte and J. Tedds, “Making the Case for Research Data Management,” Digital Curation Centre Jisc Briefing Paper, Sep. 2011. [Online]. Available: https://www. Management (visited on 11/10/2022).

M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, et al., “The FAIR Guiding Principles for scientific data management and stewardship,” en, Scientific Data, vol. 3, no. 1, p. 160 018, Mar. 2016, Number: 1 Publisher: Nature Publishing Group, ISSN: 2052-4463. DOI: 10. 1038/sdata.2016.18. [Online]. Available: sdata201618 (visited on 11/15/2022).

M. Diepenbroek, F. O. Glockner, P. Grobe, et al., “Towards an Integrated Biodiversity and Ecological Research Data Management and Archiving Platform: The German Federation for the Curation of Biological Data (GFBio),” p. 11, [Online]. Available: https://www. Federation_for_the_Curation_of_Biological_Data_GFBio (visited on 11/13/2022).

S. N. Goodman, D. Fanelli, and J. P. A. Ioannidis, “What does research reproducibility mean?” eng, Science Translational Medicine, vol. 8, no. 341, 341ps12, Jun. 2016, ISSN: 1946-6242. DOI: 10.1126/scitranslmed.aaf5027. [Online]. Available: https://pubmed. (visited on 12/19/2022).

B. Mons, Data Stewardship for Open Science: Implementing FAIR Principles. New York: Chapman and Hall/CRC, Feb. 2018, ISBN: 978-1-315-38071-1. DOI: 10.1201/ 9781315380711.

E. Jones, N. Kalantery, and B. Glover, “Research 4.0: Interim report,” en, Demos, Report, Oct. 2019. [Online]. Available: (visited on 01/15/2023).

M. Grieves, Origins of the Digital Twin Concept. Aug. 2016. DOI: 10.13140/RG.2.2. 26367.61609. [Online]. Available: 307509727_Origins_of_the_Digital_Twin_Concept (visited on 11/30/2022).

T. P. Raptis, A. Passarella, and M. Conti, “Data Management in Industry 4.0: State of the Art and Open Challenges,” IEEE Access, vol. 7, pp. 97052–97093, 2019, Conference Name: IEEE Access, ISSN: 2169-3536. DOI: 10.1109/ACCESS.2019.2929296. [Online]. Available: (visited on 11/10/2022).

J. Lehmann, S. Schorz, A. Rache, T. Ha ̈ußermann, M. Ra ̈dle, and J. Reichwald, “Establishing reliable research data management by integrating measurement devices utilizing intelligent digital twins,” Sensors, vol. 23, no. 1, 2023, ISSN: 1424-8220. DOI: 10.3390/ s23010468. [Online]. Available:

J. Lehmann, A. Lober, T. Ha ̈ußermann, A. Rache, L. Ollinger, H. Baumga ̈rtel, and J. Reichwald, “The anatomy of the internet of digital twins: A symbiosis of agent and digital twin paradigms enhancing resilience (not only) in manufacturing environments,” Machines, vol. 11, no. 5, 2023, ISSN: 2075-1702. DOI: 10.3390/machines11050504. [Online]. Available:




Conference Proceedings Volume


Poster presentations II (Call for Papers)
Received 2023-04-24
Accepted 2023-06-30
Published 2023-09-07

Funding data