Quality Assessment for Research Data Management in Research Projects
DOI:
https://doi.org/10.52825/cordi.v1i.420Keywords:
maturity model, quality assessment, engineering research process, research data managementAbstract
In the context of research data management (RDM), researchers are confronted with a multitude of new tasks and responsibilities. The totality of all tasks to ensure the re-use of data, long-term archiving, and access to data through data management planning, further data documentation, and provinces of data collection and analysis are described as research data management [1]. Often, the process of RDM is represented with data life cycle models, which include the basic phases of planning, data collection, analysis, archiving, access, and reuse [2].
Downloads
References
S. Buettner, H.-C. Hobohm, and L. Mueller. "Handbuch Forschungsdatenmanagement, 2011, 978-3-88347-283-6.
S. T. Kowalczyk, "Modelling the Research Data Lifecycle." IJDC 12, 2, 2017, pp. 331–361, doi: 10.2218/ijdc.v12i2.429.
L. T. M. Blessing and A. Chakrabarti. "Drm, a design research methodology," Springer, Heidelberg, 2014, 978-1-4471-5774-8.
D. Iglezakis and B. Schembera, "Anforderungen der Ingenieurwissenschaften an das Forschungsdatenmanagement der Universität Stuttgart - Ergebnisse der Bedarfsanaly-se des Projektes DIPL-ING." o-bib 5, 3, 2018, pp. 46–60, doi: 10.5282/o-bib/2018H3S46-60.
M. Kindling, "Qualitätssicherung im Umgang mit digitalen Forschungsdaten / Quality assurance of digital research data / La garantie de la qualité des données numériques de recherche." Information - Wissenschaft & Praxis 64, 2-3, 2013, doi: 10.1515/iwp-2013-0020.
J. Becker, R. Knackstedt, and J. Pöppelbuß. "Developing maturity models for IT man-agement: A procedure model and its application, 2009, doi: 10.1007/s12599-009-0044-5.
A. Lehmann and C. Odebrecht, "Reifegradmodelle im Forschungsdatenmanagement – IT-Prozessoptimierung im Wissenschaftsbetrieb." Information – Wissenschaft & Praxis 74, 1, 2023, pp. 9–21, doi: 10.1515/iwp-2022-2249.
R. H. Schmitt, V. Anthofer, S. Auer, S. Başkaya, C. Bischof, T. Bronger, F. Claus, F. Cordes, É. Demandt, T. Eifert, B. Flemisch, M. Fuchs, M. Fuhrmans, R. Gerike, E.-M. Gerstner, V. Hanke, I. Heine, L. Huebser, D. Iglezakis, G. Jagusch, A. Klinger, M. Kraf-czyk, A. Kraft, P. Kuckertz, U. Küsters, R. Lachmayer, C. Langenbach, I. Mozgova, M. S. Müller, B. Nestler, P. Pelz, M. Politze, N. Preuß, M.-D. Przybylski-Freund, N. Rißler-Pipka, M. Robinius, J. Schachtner, H. Schlenz, A. Schwarz, J. Schwibs, M. Selzer, I. Sens, T. Stäcker, C. Stemmer, W. Stille, D. Stolten, R. Stotzka, A. Streit, R. Strötgen, and W. M. Wang. "NFDI4Ing - the National Research Data Infrastructure for Engineer-ing Sciences, 2020, doi: 10.5281/zenodo.4015200.
H. Dierend, O. Altun, I. Mozgova, and R. Lachmayer, "Management of Research Field Data Within the Concept of Digital Twin," In Advances in System-Integrated Intelli-gence, M. Valle, D. Lehmhus, C. Gianoglio, E. Ragusa, L. Seminara, S. Bosse, A. Ib-rahim and K.-D. Thoben, Eds. Lecture Notes in Networks and Systems. Springer Inter-national Publishing, Cham, 2023, pp. 205–214, doi: 10.1007/978-3-031-16281-7_20.
Downloads
Published
How to Cite
Conference Proceedings Volume
Section
License
Copyright (c) 2023 Max Leo Wawer, Johanna Wurst, Roland Lachmayer
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-07-03
Published 2023-09-07